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Improved control of delayed measured systems
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In this paper, we address the question of how the control of delayed measured chaotic systems can be
improved. Both unmodified Ott-Grebogi-Yorke control and difference control can be successfully applied only
for a certain range of Lyapunov numbers depending on the delay time. We show that this limitation can be
overcome by at least two classes of methods, namely, by rhythmic control and by the memory methods of
linear predictive logging control and memory difference control.
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I. INTRODUCTION Like for the control method itself, the discussion of the
Delay is a generic problem in the control of chaotic Sys_measurement delay problem in chaos control has to take into
tems. The effective delay timein any feedback loop is the account the special issues of the situation: In classical control

sum of at least three delay times, the duration of measuréPPlications, one always tries to keep the control loop la-

ment, the time needed to compute the appropriate contrdfNcY as short as possible. In chaotic systems, however, one
ants to control a fixed point of the Poincaré iteration and

amplitude, and the response time of the system to the appli X X : : .
control. The latter effect appears especially when the applied'/S has to wait until the next crossing of the Poincare sur-
ace of section, where the system again is in the vicinity of

control additionally has to propagate through the system . X
; fgat fixed point.
These response times may extend to one or more cycl " . .
lengths[1] The stability theory and the delay influence fo_r time-
For thé formal situation of fixed-point stabilization in continuous chaos control schemes have been studied exten-
i i trol. the | fg lav has b . tsively [16-2Q, and an improvement of control by periodic
Ime-continuous control, the 1SSue of delay has been INVESli, 5 qjation has been proposed[#1]. For measurement de-

gated widely in control theory, dating back at least to thejays that extend to a full period, however, no extension of the
Smith predictof2]. This approach mimics the, yet unknown, time-continuous Pyragas scheme is available.

actual system state by a linear prediction based on the last | this paper, we investigate the major Poincaré-based
measurement. Its time-discrete counterparts discussed in thigntrol schemes Ott-Grebogi-York©GY) control [8] and
paper allow us to place all eigenvalues of the associated lindifference feedbackl5] in the presence of time delay, and
ear dynamics to zero, and always ensure stability. (Tivee-  focus on the question of what strategies can be used to over-
continuoug Smith predictor with its infinite-dimensional ini- come the limitations due to the delay as studiedia®]. We
tial condition had to be refined3,4], giving rise to the show how the measurement delay problem can be solved
recently active fields ofmodel predictive contro[5]. For  systematically for OGY control and difference control by
fixed-point stabilization, an extension of permissible latencyrhythmic control and memory methods and we give con-
has been found for a modified proportional-plus-derivativestructive direct and elegant formulas for the deadbeat control
controller[6]. in the time-discrete Poincaré iteration. While the predictive
If one wants to stabilize the dynamics of a chaotic systentontrol method of linear predictive logging contr@/PLC)
onto an unstable periodic orbit, one is in a special situationpresented below for OGY control has a direct correspon-
In principle, a proper engineering approach could be to uséence to the Smith predictor and thus can be reviewed as its
the concept of sliding mode contrpd], i.e., to use a comov- somehow straightforward implementation within the un-
ing coordinate system and perform suitable control methodstable subspace of the Poincaré iteration, this prediction ap-
within it. However, this requires quite accurate knowledge ofproach does not guarantee a stable controller for difference
the whole trajectory and stable manifold, with respective nucontrol. However, within a class of feedback schemes linear
merical or experimental costs. in system parameters and system variable, there is always a
Therefore, direct approaches have been developed by exnique scheme where all eigenvalues are zero, i.e., the
plicitly taking into account either a Poincaré surface of secimemory difference contradlMDC) scheme presented below.
tion [8] or the explicit periodic orbit length9]. This field of  The method can be applied also for more than one positive
controlling chaos or stabilization of chaotic systems, by Lyapunov exponent, and shows, within the validity of the
small perturbations, in system variablg<] or control pa- linearization in the vicinity of the orbit, to be free of princi-
rameters[8], emerged to a widely discussed topic with ap-pal limitations in Lyapunov exponents or delay time. For
plications in a broad area from technical to biological sys-zero delay(but the inherent one-period delay of difference
tems. Especially in fast systemi¥1,12 or for slow drift in ~ control), MDC has been demonstrated experimentally for a
parameterq13,14), difference control methods have been chaotic electronic circuif13] and a thermionic plasma dis-
successful, namely, the time-continuous Pyragas scli@ne charge diodg¢14], with excellent agreement, both of stability
extended time-delay autosynchronizati@TDAS) [11], and  areas and transient Lyapunov exponents, to the theory pre-
time-discrete difference contrl5]. sented here.
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DELAYED MEASUREMENT 1+ 1

II. CONTROL OF UNSTABLE PERIODIC ORBITS AND 1
Nins =
inf + !

A. Ott-Grebogi-Yorke (OGY) control
9 ( ) [22]. Thus, delay severely reduces the number of controllable

The method of Ott, Grebogi, and York8] stabilizes un- fixed points, and one has to develop special control strategies
stable fixed points, or unstable periodic orbits utilizing afor the control of delayed measured systems.
Poincaré surface of section, by feedback that is applied in the
vicinity of the fixed pointx* of a discrete dynamics,q
=f(x,r). For a chaotic flow, or corresponding experiment,

the system dynamic§= Iz(i,r) reduced to the discrete dy-
namics between subsequent Poincaré sectiopstat. .. ,t,.

B. Delay matching in experimental situations

Before discussing the time-discrete reduced dynamics in
the Poincaré iteration, it should be clarified how this relates

This description is fundamentally different from a strobo- {0 @n experimental control situation. At first glance, the time-

SCOpiC sampling as Iong as the system is not on a periodi Iscrete viewpoint seems to Correspond only to a case where

orbit, where the sequence of differenégst;_;) would show inccileIa%glgﬁeévatlgg]gorttl)?ﬁetr? ttﬁe Or;e;t ggl'{:clzreofsﬁcm_ﬁ?e
a periodic structure. y gtn, p :

If there is only one positive Lyapunov exponent, we Cangeneric experimental situation, however, comes up with a

proceed considering the motion in the unstable direction Onl)ponmatchlng delay. Application of all control methods dis-

(see Appendix A i.e., a one-dimensional iterated map Forcussed here requires us to introduce an additional delay, usu-

- ally by waiting for the next Poincaré crossing, so that mea-
two or more positive Lyapunov exponents, one can PrOCeeurement and control are applied without phase shift at the
in a similar fashion, see Appendixes B and C. PP b

In OGY control, the control parametey is made time-  S2M€ position of the orbit. In this case, the next Poincaré

dependent. The amplitude of the feedbagkr r, added to crossing positiorx,, is a function of the values of andr at

the control parametet, is proportional by a constastto the a finite number of previous Po_lncare Crossings only, i.e., it
: ' L _ * does not depend on intermediate positions. Therefore, the
distancex—x* from the fixed point, i.e.,r=ro+e(x—x*),

. ; : . (a priori infinite-dimensiongl delay system reduces to a
and the feedback gain can be determined from a l'near'za“o%'nite-dimensional iterated map.

around the fixed point, which reads, if we neglect higher- If the delay(plus the time of the waiting mechanism to

order terms, the next Poincaré crossing not matching the orbit length,
the control schemes may perform less efficiently. Even for

pr of larger deviations from the orbit, the time between the
f(X Mo+ M) = F(X* 1) + (X — X * )<—) + H(—) Poincaré crossings will vary only marginally, thus a control
X/ erg N /v amplitude should be available in time. In practical situations,

therefore, the delay should not exceed the orbit length minus
the variance of the orbit length that appears in the respective
=f(x*,rg) + (N + ue) (X —X*). (1) system and control setup.
In a formal sense, the Poincaré approach ensures robust-
ness with respect to uncertainties in the orbit length, as it
The second expression vanishes éer-\/u, that is, in lin-  always ensures a synchronized reset of both trajectories and
ear approximation the system arrives at the fixed point at theontrol. Between the Poincaré crossings, the control param-
next time stepx.;=x*. The uncontrolled system is assumed eter is constant; the system is independent of everytiting
to be unstable in the fixed point, i.¢\| > 1. The system with  advance othe last Poincaré crossing. It is solely determined
applied control is stable if the absolute value of the eigenpy the differential equationor experimental dynamigs
values of the iterated map is smaller than 1, Thus the next crossing position is a well defined iterated
function of the previous one. This is quite in contrast to the
situation of a delay-differential equatigas in Pyragas con-
X1 =X* [= [N+ pe)(—x* ) <[x=x*|.  (2)  trol), which has an infinite-dimensional initial condition it
“never gets rid of.” One may proceed to stability analysis via
Floquet theory[25] as investgated for continuoy46] and
Therefore,e has to be chosen betweeénl-N\)/u and(+1  Ppoincaré-basef23,26 control schemes. Though a Poincaré
=N/, and this interval is of width 24 and independent of  crossing detection may be applied as well, the position will
A, i.e., fixed points with arbitrarj. can be stabilized. This depend not only on the last crossing, but also on all values of
property, however, does not survive for delayed measurethe system variable within a time horizon defined by the
ment: If no modification of the OGY scheme is taken into maximum of the delay length and timaximal) time differ-
account despite a delay eftime steps, control is delimited ence between two Poincaré crossighich are nonstrobo-
by a rdependent maximal Lyapunov number ®f,=1  scopig. Thus the Poincaré iteration would be a function be-
+(1/7) [22]. Similarily, for difference control[15] ri-ro  tween two infinite-dynamical spaces. Apart from further

= H(x*, 1) + NX = X* ) + pury

=e(X-,~X-~1), the system is of dimension+2; only oscil-  mathematical subtleties, a delay differential equation with
latory repulsive fixed points can be controlled up to afixeddelay lacks the major advantage of a Poincaré map of
Lyapunov number of reducing the system dynamics to a low-dimensional system.
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For all control schemes discussed in this paper, the additiona He 20 ue 20
dimensionality is not a continuous horizon of states, but 15 15 \
merely a finite set of values that were measured at the pre‘T=O 10 L w=l 10
vious Poincaré crossings. > 5/
-3 -2 T =~ 2 3 = = T 2 3
N N
. RHYTHMIC CONTROL AND STATE MEMORY -10 -10
CONTROL pe 20 pe 20
In the remainder, we choosg=0 if no control is applied,  1=2 ig ’p’ 1= ig
andx*=0. Before discussing the LPLC and MDC schemes 5 5
in Sec. IV, which are the method of choice from a theoretical —l —]
point of view, we will briefly analyze two approaches that -3 2 _1_5WJ 2 %3 =3 - _5\ 2 i
may be favored in experimental situations, especially if an -10 -10
analog implementation is desired. e 20 e 20 .
Rhythmic OGY controlTo eliminate the additional de- a 15 H 15
grees of freedom caused by the delay term, one can restric =4 10 =5 10
oneself to apply control rhythmically only evermt1 time 5 5
steps(7+2 for difference contrg|] and then leave the system e _
uncontrolled for the remaining time steps. Thens(t) ap- 3 2 _1_5\ 2 ; 3 2 _5\ 2 3%
pears to be time-dependent witt mod 7)=(g,0,...,0, -10 -10

and, after(7+1) iterations we again have the same dynamics
in time-delayed coordinates, but witk™?! instead of \.
Equivalently,

FIG. 1. Periodic difference feedback fer0,1,2,3,4,5: Mxi-
mal, optimal, and minimal value qie for given\ to obtain stabi-
lization by control applied every+2 time steps.
Xee(ren) = N+ B0, (3
method is required, one may extend the single delay line to

i.e., controlling the(7+1)-fold iterate of the original system. several delay lines, each with a gain coefficient,

This looks formally elegant, but leads to practically uncon-

trollable high effective Lyapunov numbers™! both for I=eXeg+ X+ + &ne1Xion-1- (6)

large\ and larger. _ -
Rhythmic difference controTo enlarge the range of con- O N Steps memory and=1, the control matrix is

trollable \, one again has the possibility to reduce the dimen- - e &
sion of the control process in linear approximation to one by X1 ! n Sl X,
applying control everyr+2 time steps, . 10 0 .
: o 1 - : :
Xer1 = X+ 8 (Xeey = Xeorm) = (N7 + peN = pue) X g _1 .
(4) '
! : ’
and the goak.,;=0 can be fulfilled by X : o0 X
t-n t-n-1
AL 0o -- -0 1 0
,U/S—_l_)\. (5) (7)

One has to choosge betweenue,=—(\"1+1)/(1-)\) to  With the characteristic equatiof—\)a™'+=L e;a"". We

achieve control as shown in Fig. {The undelayed case can choosew;=a,=""-an.,=-N\/(n+2) and evaluate opti-
=0 has already been discussed1s,23,24,27) With rhyth-  mal values for alle; by comparing with the coefficients of
mic control, there is no range limit fox, and even fixed the producﬂ]{‘:f(a—ai). This method allows control up to
points with positiveN can be stabilized by this method. Amax=2+n, therefore arbitraryx can be controlled if a
When using differences for periodic feedback, one stillmemory length oh>\-2 and the optimal coefficents are
has the problem that the control gain increases\fyand  used.
noise sums up for+1 time steps before the next control  For more than one step delay, one has the situation
signal is applied. Additionally, now there is a singularity for =0, ... &,-4=0. This prohibits the “trivial pole placement”
A=+1 in the “optimal” control gain given by Eq4), as for  given abovechoosing all; to the same valyeand therefore
A= +1. Differencesx,—x.; when escaping from the fixed reduces the maximal controllableand no general scheme
point are naturally small. Here one has to choose betweefor optimal selection of the; applies. One can alternatively
using a large control gaitbut magnifying noise and finite use the LPLC method described below, which provides an
precision effects or using a small control gain of order optimal control scheme.
me-(N=+1)=7+1 (but having larger eigenvalues and there-  State memory time-discrete difference contialo other
fore slow convergenge strategies that have been discussed by Socolar and Gauthier
State memory OGY controllf a technically simple [29] are discretized versions of time-continuous methods.
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Control betweem\=-(3+R)/(1-R) and A\=-1 is possible {r.} with t—7<t’<t, and the optimal gain parameters can
with discrete-ETDAS(R<1) ri=e3;_R(%_—Xx1) and  be expressed in terms afand u.

control betweenx=—(N+1) and A=-1 is achieved with In contrast to the state memory method presented above,
discrete-NTDAS (let N be a positive integer r, the LPLC method directs the systefim linear approxima-
:s[xt—(llN)EE:()xt_k]_ tion) in one time step onto the fixed point. However, when
this control algorithm is switched on, one had no control
IV. IMPROVED CONTROL USING PREVIOUS CONTRoL ~ @pplied betweert—7 and t-1, so the trajectory has to be
AMPLITUDES fairly near the orbit(in an interval with a length of order
S/\7, where ¢ is the interval half-width where control is
A. Linear predictive logging control (LPLC) switched on. Therefore, the time one has to wait until the

We first address the OGY case where the position of th&0ontrol can be successfully activated is of ordér" larger
fixed point is known. If it is technically possible to store the than in the case of undelayed control. _ _
previously applied control amplitudes, r,_,,..., then one LPLC can also be derived as a general linear feedback in
can predict the actual stase of the system using the linear the Iast' measured system state and all applied coptrol ampli-
approximation around the fixed point. That is, from the lastiudes since the system was measured, and choosing the feed-
measured valug,_. and the control amplitudes we compute bf’iCk gain parameters so that the linearized system has all
estimated values iteratively by eigenvalues zero. The linear ansatz

Yioi+1 = M + el (8 M= &Xeri * Ml1t 2 Pl s 9

leading to apredictedvalue y; of the actual system state. |eads to the dynamics in combined delayed coordinates
Then the original OGY formula can be applied, i.e,,

=-y\/ u. Again, the gain parameters are lineaxin. and all (Xy X1y = -« Kooty o v oT1eyp)
|
Xt+1 )\ 0 cee een 0 e M oMy oot 7, Xt
Xt 0 Xi-1
1 .
X-r+1 | = 10 Xt-7
rt 0 O 0 e m oMy vt 7, r'[—l
. 1 0 .
lt-re1 1 0 M-z
[
giving the characteristic polynomial the fixed point may be known inaccurately. In contrast to the

LPLC case, the reconstruction of the state from differ-
ences_,i—X.-~i-1 and applied control amplitudes is no
-yt N - )+ (N, —e)]. (10 longer unique. As a consequence, there are infinitely many
. . 1 ways to compute an estimate for the present state of the
All eigenvalues can be set to zero usiag—\""" and », :
N .. system, but only a subset of these leads to a controller design
=-\'. The general formulas even for more than one positive . 1o the fixed point. A h th
Lyapunov exponent or multiparameter control are given jpcnsuring convergence 1o the fixed point. Among these there

Appendix B. A straightforward extension is nonlinear predic-€XIStS @ unique optimal every-step control scheme for differ-
tive logging control(NLPLC) [30]. ence feedback with minimal eigenvalues and in this sense

optimal stability. This memory difference contréMDC)
method has been demonstrated in an electronic experiment
[13] and a plasma diodgl4].

Now one may wish to generalize the linear predictive We derive the feedback rule directly from the linear
feedback to difference feedback, where the exact position dinsatz,

0=-aTa™ +a(-N=n) +a™ (N =) +a™*(\ -7,

B. Memory difference control (MDC)
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e =eXeri = Xeric) * M1t o Dlier (11

leading to the dynamics in combined delayed coordinates,

(XH.]_,X»[, s ,Xt_ﬁ_l,l’t_l, s ,I’t_ﬁ_l)T = M " (Xt7Xt—lY e ,Xt_T,I't_l, s ,I’t_,.)T (12)

with

NO - 0 & - g m-m T e

10

1
M= 1 0
00 0 & - m m-m " " 7~ N
1 0
1 0
[

giving the characteristic polynomial ods. This approach has also been successfully applied in an

electronic[13] and plasmd14] experiment. All parameters

- _ 1 T\ _ ™1 . _ t i
0=-aTa™+a(=\=m)+a™ (-7~ 7)) needed for controller design can be calculated from linear-

+a" (N = mg) PN Y= ) ization parameters that can be fitted directly from experimen-
1 tal data.
+a’()\'777—1_777_8)+()\'7]T+£)]' (13)
All eigenvalues can be set to zero usiag-A""/(1-1)7, APPENDIX A: TRANSFORMATION ON THE
=+\"/(I-1) and 7=-\' for 1<i<7-1. For the general EIGENSYSTEM
case of more than one positive Lyapunov exponent or mul- ) ) )
tiparameter control, see Appendix C. Here we derive how for one unstable dimension the sta-

bilization problem reduces to the one-dimensional case. Us-
ing a covariant basis from right eigenvectasand & to
eigenvectors\, und \g and the corresponding contravariant

We have presented methods to improve Poincaré-sectioteft eigenvectorg" and f* of matrix L, we can transform the
based chaos control for delayed measurement. Both for OGWnearized dynamics
control and difference control, delay delimits control, and
improved control strategies have to be applied. Improved Xer1 = LX + Mr; (A1)
strategies contain one of the following principal ideas: rhyth-
mic control, control with memory for previous states, or con-with the help of 1=6, -fU+8&;-fS and L=\ &, '+ e S

trol with memory for previously applied control amplitudes. We define as coordinates in the eigensystefa fus and
Both rhythmic control and simple feedback control in ev- - gensy !

V. CONCLUSIONS

S._ vi Nt
ery time step have their disadvantages: For rhythmic, contrgft ™= f,, giving
large control amplitudes, on averai& 7, are required, and " "
o7 — . Xpe1 = AKXt Ty
noise increases by a factor. For simple feedback control, +17 Mutt Tt
the dimension of the system is increased and the maximal
controllable Lyapunov number is bounded. State memory X1 = NS+ it (A2)

control, however, is limited to the=1 (OGY contro) [

=0 (difference contrgl] case. Nevertheless, these three apive consider a general linear ansatz for the control signal,
proaches remain valuable in situations where experimental

conditions restrict the possibilities of designing the control < *
strategy. =2 Kj X+ 2 7T (A3)
In general, however, the LPLC and MDC strategies pro- j=0 i=0

posed here allow a so-called deadbeat control with all eigen- .
values zero, and they are in this sense optimal control mettHerer;=K-x, is OGY control. Forr,, it follows that
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A ) oc APPENDIX C: DELAYED MEASURED MAPS—
(B T+ 8 FX + 2 7T STABILIZING UNKNOWN FIXED POINTS
i=0

Ms
Y

T|
o

Now we show that even fixed points whose exact position
_ - Ly > L is not given(only an approximative value is needed to deter-
= % (K; - @)% + % (Kj - €)x + ;0 S mine the position of @-ball inside which control is switched
= - h on) can be stabilized by a difference control method that is
* similar to the LPLC method given above, even if one has
= 2 (Sp ,+E KX +E 7 i (Ad)  only delayed knowledge of differences of the system vari-
1=0 ablesx;,_,—x;_,1. Combined with stored values of the mean-
If the control in the stable direction is chosen to be zero, i.e.fime control amplitudes’---r;_..;, we propose the control
DjKjS:O, the dynamics decouples in two systems in the stablécheme
(unaffected in contrgland in the unstable direction, 1
o= K (X r = Xiomg) + 2 NiFig (C1)
j=1

Xtu+1 = )\UXF + MU(E K}thu—j + 2 U/ rt—i) . (A5)
j=0 i=0

with the feedback matrices
This equation is only one-dimensional, so it suffices to in-

vestigate the one-dimensional control problem if there is K=-ML™%L-1)7, (C2
only one unstable direction. The generalization to higher-
dimensional unstable subspaces is straightforward. i, Ni==M71LIM, (C3
APPENDIX B: STABILIZATION OF DELAYED MAPS N, =M L™(L - 1)"M. (C4)
1

We consider the motion around an unstable fixed pomﬁ_|ere we have to assume that not ohybut also(L-1) is

%:1=F (%, 7}), wheref, andx, have the same dimension of the jnyertible. Using the linear approximation, one easily com-
phase space of the systdaithough it is desirable to achieve putes directly that this control leadsXg,= 0, and again this

ﬁgggfltivrx'éh e%orStliT)%r Q%ngr ﬂ?; Cuonnsttr;llalga#iren debegv?s is a so-called deadbeat control scheme where all eigenvalues
P are zero. In linearized dynamics, we have

choosex*=0 andf=0 in the fixed point is given by Jaco-

biansD,=:L andD,=: M, Xiep = LX_ g + Mo 1, (CH)
X1 = LX, + MF,. (B1) .
In LPLC, r; is computed fromx,_. and stored amplitudes X =LK+, Lj"lMﬂ_j, (C6)
r,--fi_,, being a general feedback ansatz, =1
T and the next iteration reads
Fi= K, + 2 NjFij. (B2)
j=1 Xirq = LXK + MT;
Provided that deM # 0, the feedback can be chosen to o %1 J_ U o L
=L+ 2, UM —MM™IL™4(L - 1)
K=-M1L™, (B3) g
. X LXe o1 = MMTIL™2(L = 1) IMF
Opier N = =ML, (B4) =t (L= M
Iterating X, = fot_T+2jT=1LJ‘1M fi-j, one has +MM L™l - 1) % - > MM LIMF
r =1
X1 = LK+ M= L™ % = MM 7L 2 + 2‘1 LI + MM L™ - 1)7*MF__, = 0. (C7)
]:
Hence delay can be overcome even for inaccurately known
-> MM™ILIMF, = 0. fixed points using a sufficient number of control parameters
j=1 dimr=dimx, if both M and(L-1) are invertible.
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