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In this paper, we address the question of how the control of delayed measured chaotic systems can be
improved. Both unmodified Ott-Grebogi-Yorke control and difference control can be successfully applied only
for a certain range of Lyapunov numbers depending on the delay time. We show that this limitation can be
overcome by at least two classes of methods, namely, by rhythmic control and by the memory methods of
linear predictive logging control and memory difference control.
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I. INTRODUCTION

Delay is a generic problem in the control of chaotic sys-
tems. The effective delay timet in any feedback loop is the
sum of at least three delay times, the duration of measure-
ment, the time needed to compute the appropriate control
amplitude, and the response time of the system to the applied
control. The latter effect appears especially when the applied
control additionally has to propagate through the system.
These response times may extend to one or more cycle
lengths[1].

For the formal situation of fixed-point stabilization in
time-continuous control, the issue of delay has been investi-
gated widely in control theory, dating back at least to the
Smith predictor[2]. This approach mimics the, yet unknown,
actual system state by a linear prediction based on the last
measurement. Its time-discrete counterparts discussed in this
paper allow us to place all eigenvalues of the associated lin-
ear dynamics to zero, and always ensure stability. The(time-
continuous) Smith predictor with its infinite-dimensional ini-
tial condition had to be refined[3,4], giving rise to the
recently active fields ofmodel predictive control[5]. For
fixed-point stabilization, an extension of permissible latency
has been found for a modified proportional-plus-derivative
controller [6].

If one wants to stabilize the dynamics of a chaotic system
onto an unstable periodic orbit, one is in a special situation.
In principle, a proper engineering approach could be to use
the concept of sliding mode control[7], i.e., to use a comov-
ing coordinate system and perform suitable control methods
within it. However, this requires quite accurate knowledge of
the whole trajectory and stable manifold, with respective nu-
merical or experimental costs.

Therefore, direct approaches have been developed by ex-
plicitly taking into account either a Poincaré surface of sec-
tion [8] or the explicit periodic orbit length[9]. This field of
controlling chaos, or stabilization of chaotic systems, by
small perturbations, in system variables[10] or control pa-
rameters[8], emerged to a widely discussed topic with ap-
plications in a broad area from technical to biological sys-
tems. Especially in fast systems[11,12] or for slow drift in
parameters[13,14], difference control methods have been
successful, namely, the time-continuous Pyragas scheme[9],
extended time-delay autosynchronization(ETDAS) [11], and
time-discrete difference control[15].

Like for the control method itself, the discussion of the
measurement delay problem in chaos control has to take into
account the special issues of the situation: In classical control
applications, one always tries to keep the control loop la-
tency as short as possible. In chaotic systems, however, one
wants to control a fixed point of the Poincaré iteration and
thus has to wait until the next crossing of the Poincaré sur-
face of section, where the system again is in the vicinity of
that fixed point.

The stability theory and the delay influence for time-
continuous chaos control schemes have been studied exten-
sively [16–20], and an improvement of control by periodic
modulation has been proposed in[21]. For measurement de-
lays that extend to a full period, however, no extension of the
time-continuous Pyragas scheme is available.

In this paper, we investigate the major Poincaré-based
control schemes Ott-Grebogi-Yorke(OGY) control [8] and
difference feedback[15] in the presence of time delay, and
focus on the question of what strategies can be used to over-
come the limitations due to the delay as studied in[22]. We
show how the measurement delay problem can be solved
systematically for OGY control and difference control by
rhythmic control and memory methods and we give con-
structive direct and elegant formulas for the deadbeat control
in the time-discrete Poincaré iteration. While the predictive
control method of linear predictive logging control(LPLC)
presented below for OGY control has a direct correspon-
dence to the Smith predictor and thus can be reviewed as its
somehow straightforward implementation within the un-
stable subspace of the Poincaré iteration, this prediction ap-
proach does not guarantee a stable controller for difference
control. However, within a class of feedback schemes linear
in system parameters and system variable, there is always a
unique scheme where all eigenvalues are zero, i.e., the
memory difference control(MDC) scheme presented below.
The method can be applied also for more than one positive
Lyapunov exponent, and shows, within the validity of the
linearization in the vicinity of the orbit, to be free of princi-
pal limitations in Lyapunov exponents or delay time. For
zero delay(but the inherent one-period delay of difference
control), MDC has been demonstrated experimentally for a
chaotic electronic circuit[13] and a thermionic plasma dis-
charge diode[14], with excellent agreement, both of stability
areas and transient Lyapunov exponents, to the theory pre-
sented here.
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II. CONTROL OF UNSTABLE PERIODIC ORBITS AND
DELAYED MEASUREMENT

A. Ott-Grebogi-Yorke (OGY) control

The method of Ott, Grebogi, and Yorke[8] stabilizes un-
stable fixed points, or unstable periodic orbits utilizing a
Poincaré surface of section, by feedback that is applied in the
vicinity of the fixed point x* of a discrete dynamicsxt+1
= fsxt ,rd. For a chaotic flow, or corresponding experiment,

the system dynamicsxẆ =FW sxW ,rd reduced to the discrete dy-
namics between subsequent Poincaré sections att0,t1, . . . ,tn.
This description is fundamentally different from a strobo-
scopic sampling as long as the system is not on a periodic
orbit, where the sequence of differencessti − ti−1d would show
a periodic structure.

If there is only one positive Lyapunov exponent, we can
proceed considering the motion in the unstable direction only
(see Appendix A), i.e., a one-dimensional iterated map. For
two or more positive Lyapunov exponents, one can proceed
in a similar fashion, see Appendixes B and C.

In OGY control, the control parameterrt is made time-
dependent. The amplitude of the feedbackrt=r −r0 added to
the control parameterr0 is proportional by a constant« to the
distancex−x* from the fixed point, i.e.,r =r0+«sxt−x* d,
and the feedback gain can be determined from a linearization
around the fixed point, which reads, if we neglect higher-
order terms,

fsxt,ro + rtd = fsx * , r0d + sxt − x * dS ]f

]x
D

x*, r0

+ rtS ]f

]r
D

x*, r0

= fsx * , r0d + lsxt − x * d + mrt

= fsx * , r0d + sl + m«dsxt − x * d. s1d

The second expression vanishes for«=−l /m, that is, in lin-
ear approximation the system arrives at the fixed point at the
next time step,xt+1=x*. The uncontrolled system is assumed
to be unstable in the fixed point, i.e.,ulu.1. The system with
applied control is stable if the absolute value of the eigen-
values of the iterated map is smaller than 1,

uxt+1 − x * u = usl + m«dsxt − x * du , uxt − x * u. s2d

Therefore,« has to be chosen betweens−1−ld /m and s+1
−ld /m, and this interval is of width 2/m and independent of
l, i.e., fixed points with arbitraryl can be stabilized. This
property, however, does not survive for delayed measure-
ment: If no modification of the OGY scheme is taken into
account despite a delay oft time steps, control is delimited
by a t-dependent maximal Lyapunov number oflmax=1
+s1/td [22]. Similarily, for difference control[15] rt−r0

=«sxt−t−xt−t−1d, the system is of dimensiont+2; only oscil-
latory repulsive fixed points can be controlled up to a
Lyapunov number of

linf = − S1 +
1

t + 1
2
D

[22]. Thus, delay severely reduces the number of controllable
fixed points, and one has to develop special control strategies
for the control of delayed measured systems.

B. Delay matching in experimental situations

Before discussing the time-discrete reduced dynamics in
the Poincaré iteration, it should be clarified how this relates
to an experimental control situation. At first glance, the time-
discrete viewpoint seems to correspond only to a case where
the delay(plus waiting time to the next Poincaré section)
exactly matches the orbit length, or a multiple of it. The
generic experimental situation, however, comes up with a
nonmatching delay. Application of all control methods dis-
cussed here requires us to introduce an additional delay, usu-
ally by waiting for the next Poincaré crossing, so that mea-
surement and control are applied without phase shift at the
same position of the orbit. In this case, the next Poincaré
crossing positionxt+1 is a function of the values ofx andr at
a finite number of previous Poincaré crossings only, i.e., it
does not depend on intermediate positions. Therefore, the
(a priori infinite-dimensional) delay system reduces to a
finite-dimensional iterated map.

If the delay (plus the time of the waiting mechanism to
the next Poincaré crossing) is not matching the orbit length,
the control schemes may perform less efficiently. Even for
larger deviations from the orbit, the time between the
Poincaré crossings will vary only marginally, thus a control
amplitude should be available in time. In practical situations,
therefore, the delay should not exceed the orbit length minus
the variance of the orbit length that appears in the respective
system and control setup.

In a formal sense, the Poincaré approach ensures robust-
ness with respect to uncertainties in the orbit length, as it
always ensures a synchronized reset of both trajectories and
control. Between the Poincaré crossings, the control param-
eter is constant; the system is independent of everythingin
advance ofthe last Poincaré crossing. It is solely determined
by the differential equation(or experimental dynamics).
Thus the next crossing position is a well defined iterated
function of the previous one. This is quite in contrast to the
situation of a delay-differential equation(as in Pyragas con-
trol), which has an infinite-dimensional initial condition it
“never gets rid of.” One may proceed to stability analysis via
Floquet theory[25] as investgated for continuous[16] and
Poincaré-based[23,26] control schemes. Though a Poincaré
crossing detection may be applied as well, the position will
depend not only on the last crossing, but also on all values of
the system variable within a time horizon defined by the
maximum of the delay length and the(maximal) time differ-
ence between two Poincaré crossings(which are nonstrobo-
scopic). Thus the Poincaré iteration would be a function be-
tween two infinite-dynamical spaces. Apart from further
mathematical subtleties, a delay differential equation with
fixeddelay lacks the major advantage of a Poincaré map of
reducing the system dynamics to a low-dimensional system.
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For all control schemes discussed in this paper, the additional
dimensionality is not a continuous horizon of states, but
merely a finite set of values that were measured at the pre-
vious Poincaré crossings.

III. RHYTHMIC CONTROL AND STATE MEMORY
CONTROL

In the remainder, we choosert=0 if no control is applied,
andx* =0. Before discussing the LPLC and MDC schemes
in Sec. IV, which are the method of choice from a theoretical
point of view, we will briefly analyze two approaches that
may be favored in experimental situations, especially if an
analog implementation is desired.

Rhythmic OGY control. To eliminate the additional de-
grees of freedom caused by the delay term, one can restrict
oneself to apply control rhythmically only everyt+1 time
steps(t+2 for difference control), and then leave the system
uncontrolled for the remaining time steps. Then«=«std ap-
pears to be time-dependent with«st mod td=s«0,0 , . . . ,0d,
and, afterst+1d iterations we again have the same dynamics
in time-delayed coordinates, but withlt+1 instead of l.
Equivalently,

xt+st+1d = lt+1xt + «0mxt, s3d

i.e., controlling thest+1d-fold iterate of the original system.
This looks formally elegant, but leads to practically uncon-
trollable high effective Lyapunov numberslt+1 both for
largel and larget.

Rhythmic difference control. To enlarge the range of con-
trollablel, one again has the possibility to reduce the dimen-
sion of the control process in linear approximation to one by
applying control everyt+2 time steps,

xt+1 = lxt + m«sxt−t − xt−t−1d = slt+1 + m«l − m«dxt−t−1

s4d

and the goalxt+1

!
=0 can be fulfilled by

m« = −
lt+1

1 − l
. s5d

One has to choosem« betweenm«±=−slt+1±1d / s1−ld to
achieve control as shown in Fig. 1.(The undelayed caset
=0 has already been discussed in[15,23,24,27].) With rhyth-
mic control, there is no range limit forl, and even fixed
points with positivel can be stabilized by this method.

When using differences for periodic feedback, one still
has the problem that the control gain increases bylt, and
noise sums up fort+1 time steps before the next control
signal is applied. Additionally, now there is a singularity for
l= +1 in the “optimal” control gain given by Eq.(4), as for
l. +1. Differencesxt−xt−1 when escaping from the fixed
point are naturally small. Here one has to choose between
using a large control gain(but magnifying noise and finite
precision effects) or using a small control gain of order
m«−sl= +1d=t+1 (but having larger eigenvalues and there-
fore slow convergence).

State memory OGY control. If a technically simple

method is required, one may extend the single delay line to
several delay lines, each with a gain coefficient,

rt = «1xt−1 + «2xt−2 + ¯ + «n+1xt−n−1. s6d

For n steps memory andt=1, the control matrix is

1
xt+1

A

A
xt−n

2 =1
l «1 ¯ «n «n+1

1 0 0

0 1 � A
A �

�

A � 0 A
0 ¯ ¯ 0 1 0

21
xt

A

A
xt−n−1

2 ,

s7d

with the characteristic equationsa−ldan+1+oi=1
n «ia

n−i. We
can choosea1=a2=¯an+2=−l / sn+2d and evaluate opti-
mal values for all«i by comparing with the coefficients of
the productPi=1

n+2sa−aid. This method allows control up to
lmax=2+n, therefore arbitraryl can be controlled if a
memory length ofn.l−2 and the optimal coefficents«i are
used.

For more than one step delay, one has the situation«1
=0, . . . ,«t−1=0. This prohibits the “trivial pole placement”
given above(choosing allai to the same value) and therefore
reduces the maximal controllablel and no general scheme
for optimal selection of the«i applies. One can alternatively
use the LPLC method described below, which provides an
optimal control scheme.

State memory time-discrete difference control. Two other
strategies that have been discussed by Socolar and Gauthier
[29] are discretized versions of time-continuous methods.

FIG. 1. Periodic difference feedback fort=0,1,2,3,4,5: Maxi-
mal, optimal, and minimal value ofm« for given l to obtain stabi-
lization by control applied everyt+2 time steps.

IMPROVED CONTROL OF DELAYED MEASURED SYSTEMS PHYSICAL REVIEW E70, 056225(2004)

056225-3



Control betweenl=−s3+Rd / s1−Rd and l=−1 is possible
with discrete-ETDASsR,1d rt=«ok=0

` Rksxt−k−xt−k−1d and
control betweenl=−sN+1d and l=−1 is achieved with
discrete-NTDAS (let N be a positive integer) rt
=«fxt−s1/Ndok=0

N xt−kg.

IV. IMPROVED CONTROL USING PREVIOUS CONTROL
AMPLITUDES

A. Linear predictive logging control (LPLC)

We first address the OGY case where the position of the
fixed point is known. If it is technically possible to store the
previously applied control amplitudesrt ,rt−1, . . ., then one
can predict the actual statext of the system using the linear
approximation around the fixed point. That is, from the last
measured valuext−t and the control amplitudes we compute
estimated values iteratively by

yt−i+1 = lxt−i + mrt−i s8d

leading to apredictedvalue yt of the actual system state.
Then the original OGY formula can be applied, i.e.,rt
=−ytl /m. Again, the gain parameters are linear inxt−t and all

hrt8j with t−tø t8ø t, and the optimal gain parameters can
be expressed in terms ofl andm.

In contrast to the state memory method presented above,
the LPLC method directs the system(in linear approxima-
tion) in one time step onto the fixed point. However, when
this control algorithm is switched on, one had no control
applied betweent−t and t−1, so the trajectory has to be
fairly near the orbit(in an interval with a length of order
d /lt, where d is the interval half-width where control is
switched on). Therefore, the time one has to wait until the
control can be successfully activated is of orderlt−1 larger
than in the case of undelayed control.

LPLC can also be derived as a general linear feedback in
the last measured system state and all applied control ampli-
tudes since the system was measured, and choosing the feed-
back gain parameters so that the linearized system has all
eigenvalues zero. The linear ansatz

rt = «xt−t−i + h1rt−1 + ¯ htrt−t s9d

leads to the dynamics in combined delayed coordinates

sxt,xt−1, . . . ,xt−t,rt−1, . . . ,rt−td

1
xt+1

xt

A
A
A

xt−t+1

rt

A
A
A

rt−t+1

2 =1
l 0 ¯ ¯ 0 « h1 h2 ¯ ¯ ht

0

1 �

� �

� �

1 0

0 0 ¯ ¯ 0 « h1 h2 ¯ ¯ ht

1 0

� �

� �

1 0

21
xt

xt−1

A
A
A

xt−t

rt−1

A
A
A

rt−t

2
giving the characteristic polynomial

0 = −atfat+1 + ats− l − h1d + at−1sl · h1 − h2d + at−2sl · h2

− h3d + ¯ + a1sl · ht−1 − htd + sl · ht − «dg. s10d

All eigenvalues can be set to zero using«=−lt+1 and hi
=−li. The general formulas even for more than one positive
Lyapunov exponent or multiparameter control are given in
Appendix B. A straightforward extension is nonlinear predic-
tive logging control(NLPLC) [30].

B. Memory difference control (MDC)

Now one may wish to generalize the linear predictive
feedback to difference feedback, where the exact position of

the fixed point may be known inaccurately. In contrast to the
LPLC case, the reconstruction of the statext−t from differ-
encesxt−t−i −xt−t−i−1 and applied control amplitudesrt−j is no
longer unique. As a consequence, there are infinitely many
ways to compute an estimate for the present state of the
system, but only a subset of these leads to a controller design
ensuring convergence to the fixed point. Among these there
exists a unique optimal every-step control scheme for differ-
ence feedback with minimal eigenvalues and in this sense
optimal stability. This memory difference control(MDC)
method has been demonstrated in an electronic experiment
[13] and a plasma diode[14].

We derive the feedback rule directly from the linear
ansatz,
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rt = «sxt−t−i − xt−t−i−1d + h1rt−1 + ¯ htrt−t s11d

leading to the dynamics in combined delayed coordinates,

sxt+1,xt, . . . ,xt−t+1,rt−1, . . . ,rt−t+1dT = M · sxt,xt−1, . . . ,xt−t,rt−1, . . . ,rt−tdT s12d

with

M =1
l 0 ¯ 0 « − « h1 h2 − h1 ¯ ¯ ht − ht+1

1 0

1 �

� �

� �

1 0

0 0 ¯ 0 « − « h1 h2 − h1 ¯ ¯ ht − ht+1

1 0

� �

� �

1 0

2
giving the characteristic polynomial

0 = −atfat+1 + ats− l − h1d + at−1sl · h1 − h2d

+ at−2sl · h2 − h3d ¯ + a2sl · ht−2 − ht−1d

+ a1sl · ht−1 − ht − «d + sl · ht + «dg. s13d

All eigenvalues can be set to zero using«=−lt+1/ sl −1dht

= +lt / sl −1d and hi =−li for 1ø i øt−1. For the general
case of more than one positive Lyapunov exponent or mul-
tiparameter control, see Appendix C.

V. CONCLUSIONS

We have presented methods to improve Poincaré-section-
based chaos control for delayed measurement. Both for OGY
control and difference control, delay delimits control, and
improved control strategies have to be applied. Improved
strategies contain one of the following principal ideas: rhyth-
mic control, control with memory for previous states, or con-
trol with memory for previously applied control amplitudes.

Both rhythmic control and simple feedback control in ev-
ery time step have their disadvantages: For rhythmic, control
large control amplitudes, on averagelt /t, are required, and
noise increases by a factorÎt. For simple feedback control,
the dimension of the system is increased and the maximal
controllable Lyapunov number is bounded. State memory
control, however, is limited to thet=1 (OGY control) [t
=0 (difference control)] case. Nevertheless, these three ap-
proaches remain valuable in situations where experimental
conditions restrict the possibilities of designing the control
strategy.

In general, however, the LPLC and MDC strategies pro-
posed here allow a so-called deadbeat control with all eigen-
values zero, and they are in this sense optimal control meth-

ods. This approach has also been successfully applied in an
electronic[13] and plasma[14] experiment. All parameters
needed for controller design can be calculated from linear-
ization parameters that can be fitted directly from experimen-
tal data.

APPENDIX A: TRANSFORMATION ON THE
EIGENSYSTEM

Here we derive how for one unstable dimension the sta-
bilization problem reduces to the one-dimensional case. Us-
ing a covariant basis from right eigenvectorseWu and eWs to
eigenvectorslu und ls and the corresponding contravariant

left eigenvectorsfWu and fWs of matrix L, we can transform the
linearized dynamics

xWt+1 = LxWt + MrWt sA1d

with the help of 1=eWu··fW
u+eWs··fW

s and L=lueWu··fW
u+lseWs··fW

s.

We define as coordinates in the eigensystemxt
u
ª fWuxWt and

xt
s
ª fWsxWt, giving

xt+1
u = luxt

u + rtmu,

xt+1
s = lsxt

s + rtms. sA2d

We consider a general linear ansatz for the control signal,

rt = o
j=0

`

KW j ·xWt−j + o
i=0

`

hi · rt−i . sA3d

Here rt=KW ·xWt is OGY control. Forrt, it follows that
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rt = o
j=0

`

KW jseWu· · fWu + eWs· · fWsdxWt−j + o
i=0

`

hi · rt−i

= o
j=0

`

sKW j ·eWudxt−j
u + o

j=0

`

sKW j ·eWsdxt−j
s + o

i=0

`

hi · rt−i

= o
j=0

`

Kj
uxt−j

u + o
j=0

`

Kj
sxt−j

s + o
i=0

`

hi · rt−i . sA4d

If the control in the stable direction is chosen to be zero, i.e.,
∀ jKj

s=0, the dynamics decouples in two systems in the stable
(unaffected in control) and in the unstable direction,

xt+1
u = luxt

u + muSo
j=0

`

Kj
uxt−j

u + o
i=0

`

hi · rt−iD . sA5d

This equation is only one-dimensional, so it suffices to in-
vestigate the one-dimensional control problem if there is
only one unstable direction. The generalization to higher-
dimensional unstable subspaces is straightforward.

APPENDIX B: STABILIZATION OF DELAYED MAPS

We consider the motion around an unstable fixed point

xWt+1=FW sxWt ,rWtd, whererWt andxWt have the same dimension of the
phase space of the system(although it is desirable to achieve
control with a minor number of control parameters). The
linear time evoution around the unstable fixed point(we

choosexW * =0W and rW=0W in the fixed point) is given by Jaco-
biansDx¬L andDr¬M,

xWt+1 = LxWt + MrWt. sB1d

In LPLC, rWt is computed fromxWt−t and stored amplitudes
rW1¯ rWt−t, being a general feedback ansatz,

rWt = KxWt−t + o
j=1

t

NjrWt−j . sB2d

Provided that detM Þ0, the feedback can be chosen to

K = − M−1Lt+1, sB3d

∀1øiøt Ni = − M−1LiM . sB4d

IteratingxWt=Ltxt−t+o j=1
t Lj−1MrWt−j, one has

xWt+1 = LxWt + MrWt = Lt+1xt−t − MM−1Lt+1xt−t + o
j=1

t

Lj−1MrWt−j

− o
j=1

t

MM−1LjMrWt−j = 0W .

APPENDIX C: DELAYED MEASURED MAPS—
STABILIZING UNKNOWN FIXED POINTS

Now we show that even fixed points whose exact position
is not given(only an approximative value is needed to deter-
mine the position of ad-ball inside which control is switched
on) can be stabilized by a difference control method that is
similar to the LPLC method given above, even if one has
only delayed knowledge of differences of the system vari-
ablesxt−t−xt−t−1. Combined with stored values of the mean-
time control amplitudesrW1¯ rWt−t−1, we propose the control
scheme

rWt = KsxWt−t − xt−t−1d + o
j=1

t+1

NjrWt−j sC1d

with the feedback matrices

K = − M−1Lt+2sL − 1d−1, sC2d

∀1øiøt Ni = − M−1LiM , sC3d

Nt+1 = M−1Lt+1sL − 1d−1M . sC4d

Here we have to assume that not onlyM but alsosL−1d is
invertible. Using the linear approximation, one easily com-

putes directly that this control leads toxWt+1=0W, and again this
is a so-called deadbeat control scheme where all eigenvalues
are zero. In linearized dynamics, we have

xWt−t = LxWt−t−1 + MrWt−t−1, sC5d

xWt = Lt+1xWt−t−1 + o
j=1

t+1

Lj−1MrWt−j , sC6d

and the next iteration reads

xWt+1 = LxWt + MrWt

= Lt+2xWt−t−1 + o
j=1

t+1

LjMrWt−j − MM−1Lt+2sL − 1d−1

3LxWt−t−1 − MM−1Lt+2sL − 1d−1MrWt−t−1

+ MM−1Lt+2sL − 1d−1xWt−t−1 − o
j=1

t

MM−1LjMrWt−j

+ MM−1Lt+1sL − 1d−1MrWt−t−1 = 0W . sC7d

Hence delay can be overcome even for inaccurately known
fixed points using a sufficient number of control parameters
dim rW=dim xW, if both M and sL−1d are invertible.
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